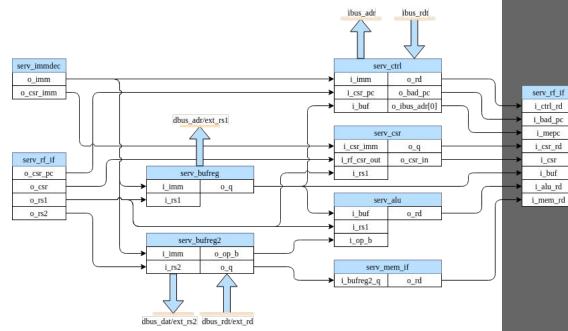
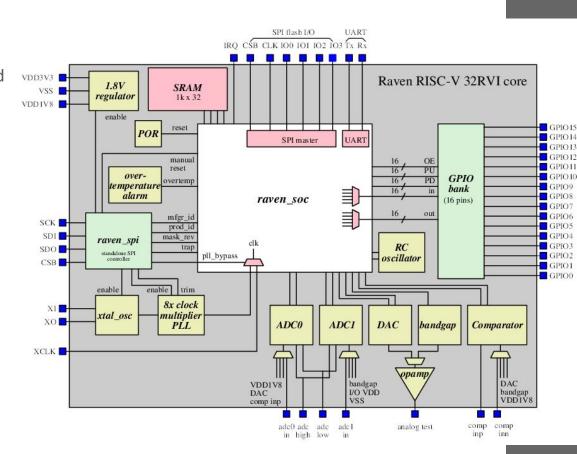
CPE 470 - Open Source IP


RISC V Review

ISA: Instruction Set Architecture

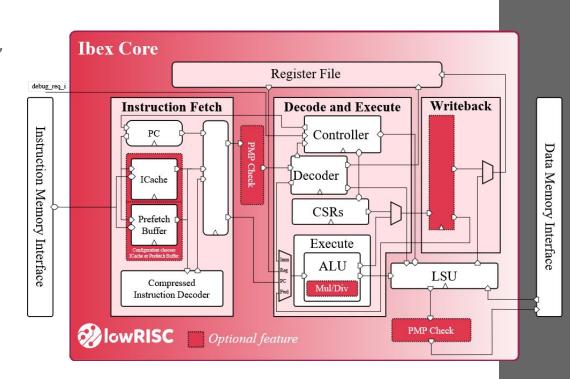
- Base ISAs: RV32 or RV64
 - o I or E: I has 32 registers, E has 16
 - M: Multiply
 - A: Atomic
 - F: Floating Point
 - D: Double-Precision Floats
 - Zicsr: Control & Status Registers, Interrupts
 - Zifencei: memory ordering protection
 - G: All of the above ^
 - B: Bit Manipulation
 - C: Compressed
- Coprocessors: used to extend ISA, handle unknown instructions
 - Example: send multiply instructions to separate multiplication coprocessor


SERV

- RISC-V RV32I + Fence
 - Optionally: Multiply, Compressed
- Smallest RISC V Core
 - 164 flip flops, excluding RF
- One Bit Data Path
 - 32-Bit Add takes 32 cycles
 - 1-bit wide ALU ops
- Coprocessor Support
 - Offloads unknown instructions to extension coprocessors
 - Many SERVs can share one coprocessor, ie. Multiply Unit
- Larger versions available
 - QERV with 4-bit path
- Built by Olof Kindgren
 - Written in Verilog

PicoRV32

- RV32I or E
 - Optionally: Multiply, Compressed
 - Multicycle, not pipelined
- Roughly 600 flip flops
 - Size Optimized
- AXI-style interfaces on memory
 - Ready/Valid
- Coprocessor Support
 - ° "PCPI"
- Built by Yosys / Claire Wolfe
 - Written in Verilog
- Implemented as SoC on Skywater, called Raven



Ibex

- RV32I or E
 - Optionally: Multiply, Compressed, and Bit Manipulation

- Roughly 10 times bigger than SERV
 - ~1000 Flip Flops
- 2 Stage Pipeline
 - Optional 3rd Stage

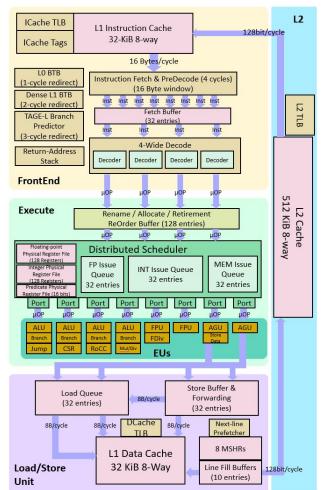
- Developed by lowRISC and PULP team at ETH Zürich
 - Written in System Verilog

Chipyard - Berkeley IP

- Collection of IP blocks and generation tools for connecting them
- Based on Chisel Language
 - Higher-level HDL based on Scala (Java Family)
 - Chisel gets built into verilog or system verilog

Rocket Core

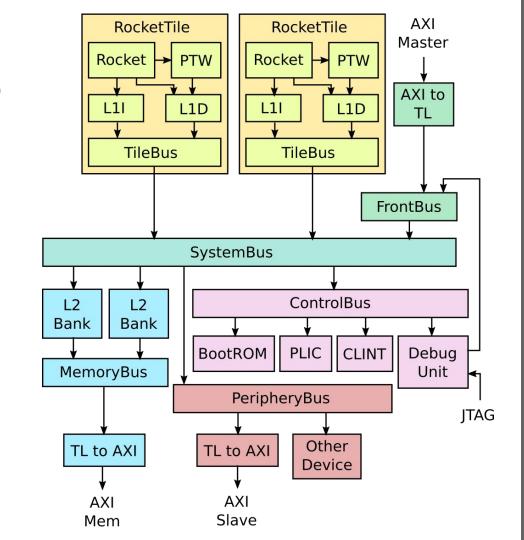
- RV64GC
 - All of the extensions
- 5 stage pipeline
 - Separate multi-stage floating point pipeline
- Branch Prediction
 - o Branch Target Buffer, Branch History Table, Return Address Stack


PC	IF	ID	EX	MEM	WB	
PC Gen	ITLB I\$ Access	Int.RF Inst Decode	Int.EX	DTLB D\$ Access	Commit	To Rocc Accelerator
			FP.RF	FP.EX1	FP.EX2	FP.EX3

Submodule	Number of flip-flops
Register file	1,984
Control and status registers	984
Instruction buffer	76
Integer pipeline	872
Multiplier/Divider	214
Total	4,130

BOOM

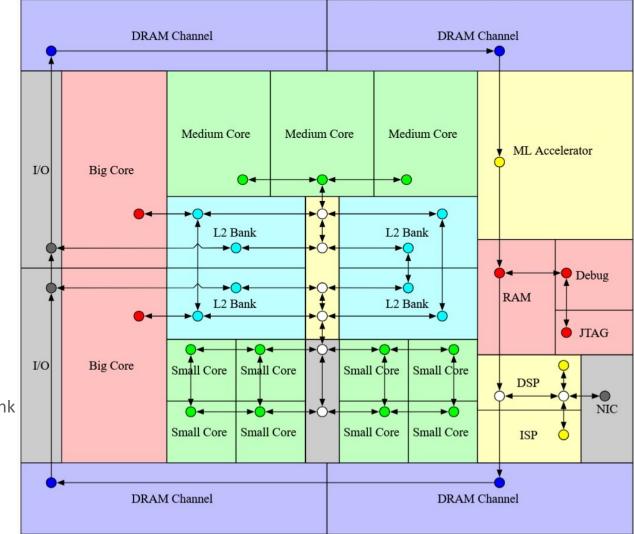
- Berkeley's Out of Order Machine
 - Fetches 16 bytes at a time into window
 - Issues 4 instructions at a time
 - ~10 logical stages, broken up into 7 physical stage pipeline
- Boots Linux
 - TLB for virtual memory
 - Privileged Modes
- RV64GC


Submodule	Number of flip-flops		
Register file	3,964		
CSR	1,238		
Instruction fetch	854		
Register rename	1,547		
Instruction issue	650		
Load/Store unit	1,941		
Arithmetic/logic unit	1,119		
Reorder buffer	1,707		
Branch prediction	465		
Total	13,485		

Rocket Chip: SoC Generator

- Automatically generate system on chip based on abstract config
- Uses its own TileLink (TL) protocol
 - Can be adapted to AXI

- Compatible with multiple cores
 - Rocket, BOOM, or any other TileLink adapted device
- Adaptable cache setup
 - Each core encompassed in tile with its own L1 cache
 - Shared L2 cache



Constellation: NoC Generator

- Automatically generate network on chip
- Built for heterogeneous systems

- Uses directed graphs to define routing architecture
 - Supports arbitrary layouts

- Uses its own transport layer
 - Can transport AXI-4 or TileLink
- Flow Control

Honorable Mentions

- VexRiscv
 - Written in SpinalHDL
 - Another Scala-based HDL
 - 5+ Stage Pipeline
 - RV32I
 - Optional Multiply, Compressed, Atomic
 - Optional Float or Double
 - VexiiRiscv (successor) is RV64IMAFDCB
- CVA6
 - Written in System Verilog
 - o 6 stage pipeline
 - RV64 IMAC, privilege modes

References

- https://chipyard.readthedocs.io/en/latest/index.html
- https://github.com/lowRISC/ibex
- https://github.com/olofk/serv
- https://github.com/YosysHQ/picorv32